
Journal of Chromatography B, 877 (2009) 615–620

Contents lists available at ScienceDirect

Journal of Chromatography B

journa l homepage: www.e lsev ier .com/ locate /chromb

Optimisation of HPLC gradient separations using artificial neural networks
(ANNs): Application to benzodiazepines in post-mortem samples

Rebecca Webb, Philip Doble ∗, Michael Dawson
Centre for Forensic Science, Department of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia

a r t i c l e i n f o

Article history:
Received 29 July 2008
Accepted 15 January 2009
Available online 21 January 2009

Keywords:

a b s t r a c t

Artificial neural networks (ANNs) were used in conjunction with an experimental design to optimise a
gradient HPLC separation of nine benzodiazepines. Using the best performing ANN, the optimum condi-
tions predicted were 25 mM formate buffer (pH 2.8), 10% MeOH, acetonitrile (ACN) gradient 0–15 min,
6.5–48.5%. The error associated with the prediction of retention times and peak widths under these
conditions was less than 5% for six of the nine analytes. The optimised method, with limits of detec-
tion (LODs) in the range of 0.0057–0.023 �g/mL and recoveries between 58% and 92%, was successfully
Artificial neural networks (ANNs)
Gradient elution
Optimisation
H
B

applied to authentic post-mortem samples. This method represents a more flexible and convenient means
for optimising gradient elution separations using ANNs than has been previously reported.
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. Introduction

Optimising HPLC separations in order to obtain satisfactory res-
lution, sensitivity and analysis times can be a complicated and
ime-consuming process, given the large number of parameters
hat may be varied and the possibility of interactions between vari-
bles. Artificial neural networks (ANNs) are a multivariate approach
hat can be used for the optimisation of chromatographic separa-
ions. They are predictive data-processing programs modelled on
he human brain, which have the ability to model and solve non-
inear problems and discover the approximate rules that govern the
ptimal solution to these problems [1]. Unlike many other data-
rocessing systems, which are programmed to arrive at the correct
nswer, ANNs are able to “learn” from a set of training examples that
ontain both the inputs and the desired outputs by plotting map-
ing functions. The relationships learnt using the mapping function
rom a particular data set can then be applied to new data, and
redictions or generalisations can be made.

The basic processing unit of the ANN is the neuron, or node. In
he most common type of ANN, the multilayer perceptron (MLP)
eed-forward neural network, the network architecture is com-
rised of three layers of neurons; an input layer that receives

he data, at least one hidden layer that processes the information
eceived at the input, and an output layer, which is the observ-
ble response. Each neuron in the input layer is connected to each
euron in the hidden layer, and each one in the hidden layer is con-
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nected to each neuron in the output layer. The connections between
the neurons are known as the weights. It is these weights that deter-
mine the behaviour of the ANN and how its behaviour changes over
time during the learning process.

The error of a network is defined as the squared difference
between the outputs and the target output values, summed over
the number of output nodes and training patterns. The goal of
training the network is to adjust the weights between layers in a
direction so as to minimise the error. The most common type of
training algorithm used in analytical applications is the backprop-
agation technique [2,3]. Using this technique, the training weights
are initially given arbitrary values and an iterative approach is taken
to find their optimal values. Each iteration is known as an epoch.
Output nodes are informed of the target values and, based on the
difference between the calculated output and the target output, the
node determines the direction and the amount by which the weight
has to move in order to minimise the error. The output nodes then
propagate the amount of their errors to the hidden nodes, where
it is used to determine in which direction and by how much the
weights should change. After an appropriate number of iterations,
the network will arrive at a minimum error, and training is stopped.
At this point, the calculated outputs should be as close as possible
to the experimental output values.

The biggest problem encountered when training ANNs is the
tendency for over-learning or over-fitting, whereby the ANN does

not describe the response adequately, despite the fact that the train-
ing data may fit well. As the network is trained, its mapping function
becomes more complex, passing the point where generalisation is
the best, on to over-fitting. The over-fitted ANN has a poor ability to
generalise, or low predictive power. To prevent over-fitting, the data
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s split into a training set and a verification set. A good indication
hat over-fitting has occurred is when the verification error is sig-
ificantly larger than the training error [2,3]. By watching the error
n the verification set, training can be stopped before over-fitting
ccurs. Over-fitting can also occur when the training data contains
oise. If too few data are used, the ANN will model the noise instead
f the underlying features [4].

ANNs have been used to predict analyte retention times or res-
lutions in a number of isocratic HPLC separations [4–10], however
heir use in optimising gradient elution separations has been lim-
ted. Madden et al. [11] used an ANN to predict anion retention times
n ion chromatography. The ANN inputs were three different gradi-
nt slopes, each having the same starting and finishing composition
ver various times. One potential disadvantage with this method
s that slow gradients could result in long analysis times, which
enders the optimisation process even more time-consuming. In
ddition, the optimum conditions were only selected from seven
ossible gradients. A similar method was employed by Buciński and
aczek [12] in which the optimum was selected from a set of only

our gradient conditions. For the true optimum to be located, reten-
ion times should be predicted over all possible gradient conditions
ithin the experimental space. In contrast, Shan et al. [13] used an
NN to predict analyte retention times under all possible pH and
radient conditions, and found the optimum conditions by calculat-
ng resolution function values at each point. However, the retention
ime of each analyte was modelled using a separate ANN which, for
he separation of the seventeen amino acids in this study, required
he construction of seventeen individual ANNs.

In this study, we report a flexible and convenient means for
ptimising the gradient elution separation of nine benzodiazepines
sing ANNs in conjunction with a simple experimental design to
redict retention times and resolutions. The optimised method was
alidated and applied to the analysis of benzodiazepines in authen-
ic post-mortem blood samples.

. Materials and methods

.1. Instrumentation

Experiments were performed on a Waters Alliance 2690 Sep-
rations Module, with Waters 996 Photodiode Array Detector
Waters, Sydney, Australia). All data manipulation was executed
sing Waters Millennium Software, Version 3.05. Separations were
erformed at 30 ◦C on a Zorbax SB-C18 column (50 mm × 4.6 mm,
.8 �m) (Agilent Technologies, Sydney, New South Wales, Aus-
ralia). The mobile phase was comprised of ammonium formate
uffer (pH 2.80), acetonitrile (ACN) and MeOH at 1 mL/min. Dupli-
ate 10 �L injections were performed and detection was at 280 nm.
NN modelling of each experimental space was performed using
rajan Neural Network Simulator Version 6.0 (Trajan Software Ltd,
urham, UK).

.2. Reagents

All reagents were of analytical grade unless stated oth-
rwise. Nitrazepam, oxazepam, alprazolam, flunitrazepam,
emazepam and diazepam were obtained from Sigma–Aldrich
Sydney, New South Wales, Australia). 7-Aminoflunitrazepam,
-aminonitrazepam and 7-aminoclonazepam were obtained from
ovachem Pty Ltd (Melbourne, Victoria, Australia). Formic acid

HCOOH, APS Chemicals Ltd, Sydney, New South Wales, Australia)

nd ammonia solution (NH4OH, APS Chemicals Ltd, Sydney, New
outh Wales, Australia) were used in the preparation of the mobile
hase. Methanol (MeOH, Merck HPLC grade), ACN (Merck HPLC
rade), ethyl acetate and diethyl ether were purchased from Crown
cientific (Sydney, New South Wales, Australia). MilliQ grade water
Fig. 1. Schematic of experimental space (train = training point; select = verification
point).

(18.2 M� cm−1) was used throughout the experiments. Buffers
were prepared fresh each day and degassed by sonication prior to
use. Whole sheep blood (Oxoid Australia Pty Ltd, Theberton, SA,
Australia) was used for the preparation of spiked calibration stan-
dards. Prior to reconstitution, extracted samples were evaporated
to dryness using a Heto VR Maxi vacuum concentrator (Medos,
Sydney, New South Wales, Australia).

2.3. Calculations

The resolution of each peak pair (PP) was calculated as the dif-
ference between the retention times of each adjacent peak divided
by half the sum of the peak widths. Separations were assessed
according to the minimum resolution (Rmin) between analytes in
the separation. The relative error between experimental and pre-
dicted resolution and retention time values was calculated as the
absolute value of the difference in the experimental and predicted
values, as a percentage of the experimental value.

2.4. ANN modelling of the experimental space

Results of preliminary experiments with ammonium formate
buffer indicated that buffer concentration and pH had little effect
on the separation of the nine benzodiazepines, however selectiv-
ity varied depending on the choice of organic modifier. MeOH had
some success at partially resolving all nine analytes, while ACN was
shown to improve peak shape and overall analysis time. Therefore,
an isocratic condition with respect to MeOH and a gradient condi-
tion with respect to ACN was implemented, giving an experimental
design with the variables %MeOH and ACN gradient. %MeOH was
defined as the isocratic percentage composition of methanol in the
mobile phase. ACN gradient was defined as the percentage increase
in acetonitrile composition divided by the duration of the linear
gradient. In contrast to the other studies employing ANNs to model
gradient separations, whereby the initial and final organic modifier
concentrations were fixed, the initial composition of ACN (initial
%ACN) was introduced as a third factor. This was done to give greater
flexibility and to avoid the long analysis times required to generate
slow gradients when initial and final compositions are known. Thus,
the experimental space was as follows: 10–30% MeOH; 1–3%/min
ACN gradient; 5–10% initial %ACN.

Fifteen experiments based on a central composite design were
performed, of which nine were assigned as training points and six

as verification (select) points, as illustrated in Fig. 1 and Table 1.
Each experiment was performed in replicate with 10 �L injec-
tions of a mixed aqueous standard containing 10 �g/mL each
of diazepam, nitrazepam, alprazolam, flunitrazepam, oxazepam,
temazepam, 7-aminonitrazepam, 7-aminoflunitrazepam and 7-
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Table 1
Values for each experiment in three factor design.

Experiment No. ACN grad %MeOH Initial %ACN

1 1 20 7.5
2 2 10 7.5
3 3 20 7.5
4 2 30 7.5
5 2 20 10
6 2 20 5
7 2 20 7.5
8 3 30 10
9 3 10 10

10 1 30 10
11 1 10 10
12 3 30 5
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three experimental points were selected and run to determine if
the predicted data was consistent with this new experimental data.
Both the ANN trained on replicate data and the ANN trained on
average data demonstrated good ability to predict and learn the
training data by virtue of their correlation coefficients, which were
13 3 10 5
14 1 30 5
15 1 10 5

minoclonazepam. ANN architectures were constructed using an
utomated heuristic approach whereby the number of nodes in the
idden layer was varied. The most suitable ANNs were deemed
o be the ones that had a sufficiently low training error with a
orresponding verification error of the same magnitude, in order
o minimise the likelihood of over-fitting. Data sheets containing
large number of possible points within the experimental space

10–30% MeOH at increments of 2%, 1–3%/min ACN gradient at
ncrements of 0.1%/min, 5–10% initial ACN at increments of 0.5%)

ere created and the selected ANNs were applied to predict the
utput at each experimental point. In order to find the most appro-
riate ANN to model the chromatographic system, the effect of
arying the output used as training data was investigated by com-
aring ANNs trained on resolution outputs to ANNs trained on
etention time outputs. In addition, the effect of data quality and
uantity was investigated by comparing ANNs trained on the data
rom each replicate to ANNs trained on the average data of both
eplicates.

.5. Method validation

Calibration curves were obtained by analysing drug-free
hole sheep blood, spiked with working standard solutions

o obtain final concentrations of 0.432, 1.08, 1.44, 3.60 and
.00 �g/mL for 7-aminonitrazepam, 7-aminoflunitrazepam and 7-
minoclonazepam, and 0.576, 1.44, 1.92, 4.80 and 8.00 �g/mL for
xazepam, nitrazepam, temazepam, flunitrazepam, diazepam and
lprazolam. Calibration standards were analysed each day, and
standard curve constructed using linear regression. Accuracy

nd precision were calculated at high and low concentration for
ach drug, with five replicates at each concentration. Accuracy
as expressed as the calculated concentration as a percentage of
ominal concentration. Precision (%CV) was determined to be the
ercentage of the average divided by the peak area ratio of the three
eplicates. Recovery was calculated as the average peak area of each
nalyte in the spiked samples as a percentage of the average peak
rea of each analyte in aqueous standards. The limit of detection
LOD) was defined as a signal-to-noise ratio (S/N) of 3:1, and the
imit of quantification (LOQ) was defined as a S/N of 10:1.

.6. Sample preparation

The LLE method used for the extraction of benzodiazepines from

hole post-mortem blood was based on a method reported previ-

usly [14]. Briefly, it involved the addition of 1 mL 2 M ammonia
olution to 0.5 mL of whole blood, followed by 5 mL of diethyl
ther/ethyl acetate (1:1, v/v). Each sample was vertically agitated
or 2 min and centrifuged at 3000 rpm for 15 min. The organic layer
B 877 (2009) 615–620 617

was then transferred to a clean plastic tube, evaporated to dryness
using a vacuum centrifuge and reconstituted in 100 �L MeOH prior
to analysis.

The method was applied to post-mortem blood samples
obtained from the Division of Analytical Laboratories (DAL) fol-
lowing coronial consent. All samples were preserved femoral blood
taken as specimens at autopsy.

3. Results and discussion

3.1. ANN training

3.1.1. Resolutions as the output
Resolution between peaks is one of the more common outputs

used when training an ANN to model chromatographic behaviour.
For the first ANN, the values of the three factors and the corre-
sponding replicate resolution data from the fifteen experiments
were used as the inputs and outputs respectively, giving a total
of eighteen training points and twelve verification points. After a
thorough search through various ANN topologies, the ANN selected
for the prediction of resolutions had a MLP architecture consist-
ing of three input nodes, twelve hidden nodes and eight output
nodes (resolutions for each of the eight peak pairs) (MLP 3:3-12-
8:8). To determine the predictive ability of the selected ANN, the
observed resolution values obtained from the fifteen experiments
were plotted against the resolution values predicted by the ANN.
Good correlation was obtained between the experimental and pre-
dicted resolution values (r2 = 0.9978), as seen in Fig. 2, indicating
good predictive ability of the ANN.

A second ANN was constructed using the average resolution val-
ues of each replicate. This halved the training and verification data,
giving a total of nine training points and six verification points.
Based on this method, the ANN that gave the best performance
for the prediction of resolution values had a MLP architecture com-
prising of three input nodes, twelve hidden nodes and eight output
nodes (MLP 3:3-12-8:8). As before, the observed average resolu-
tion values obtained for each analyte in the fifteen experiments
were plotted against the predicted values generated by the ANN.
Good overall correlation (r2 = 0.9968) was found to exist between
average experimentally obtained resolutions and these predicted
resolutions.

Each ANN was applied to predict the peak pair resolution val-
ues throughout the experimental space. From this predicted data,
Fig. 2. Correlation between experimental and predicted resolutions using a MLP
3:3-12-8:8 ANN trained on replicate resolution data.
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ig. 3. Example chromatogram of the optimised separation of nine benzodiazepine
njection, detection � 280 nm, 25 mM formate buffer, pH 2.8, 10% MeOH, ACN gradi
IT, (5) OXA, (6) FLU, (7) ALP, (8) TEM, and (9) DIA.

reater than 0.99. However, the predictive ability of both networks
iminished considerably when previously unseen data was pre-
ented. The ANN trained on replicate data had an average relative
rror of 13.8 ± 14.7% (range 0.752–51.9%), while the ANN generated
sing average resolution values had an average relative error of
3.2 ± 12.5% (range 0.453–46.8%) for the three experimental con-
itions tested.

.1.2. Retention times as the output
Another common method employed when training ANNs to

odel chromatographic separations is to use retention time data as
he output variable. For the first ANN, the training data comprised
f the values of the three factors as the inputs, and the replicate
etention time data for each analyte as the outputs, giving a total of
hirty experimental points, of which twelve were assigned as ver-
fication points. The network that gave the best performance had

MLP architecture consisting of three inputs nodes, twenty hid-
en nodes and nine output nodes (retention times for each analyte)
MLP 3:3-20-9:9). Overall, the correlation between the experimen-
al and predicted retention times was good (r2 = 0.9981) suggesting
ood predictive ability of the ANN.

A second ANN was trained using the same experimental data,
owever the average retention times for each replicate were taken
nd assigned as outputs for the training and verification data,
s opposed to considering each replicate individually. This gave
total of fifteen experimental data points, including six verifi-

ation points. The best performing network comprised of three
nput nodes, twelve hidden nodes and nine output nodes arranged
n a MLP architecture (MLP 3:3-12-9:9). As before, good correla-
ion (r2 = 0.9989) between experimental and predicted data was
bserved.

Both ANNs were applied to predict the retention times of each
nalyte throughout the experimental space. Three experimental
oints were then selected and run to determine if the predicted data
as consistent with this new experimental data. The ANN trained
n both replicates from each experimental point had an average
elative error of 8.4 ± 9.7% (range 0.121–27.3%) when tested on the
ew data. The ANN trained on average retention data had a relative

rror of 9.3 ± 7.7% (range 0.787–25.6%).

Given the various outputs and types of training data that
ere considered, the best performing ANN was found to be the

ne trained on replicate retention time data. This network gave
xcellent overall correlation between experimental and predicted
ditions: Zorbax SB-C18 column (50 mm × 4.6 mm, 1.8 �m), temperature 30 ◦C, 10 �L
15 min, 6.5–48.5%; Elution order: (1) 7-NH2-NIT, (2) 7-NH2-CLO, (3) 7-NH2-FLU, (4)

retention times for the training data set and, more importantly, it
gave the lowest relative errors when presented with new data. This
may have been due to the greater number of training cases that
were available to this network as compared to the network that
was trained on average data, and the fact that the retention times
between each replicate showed very little variation i.e. the training
data contained very little noise.

Unfortunately, knowledge of analyte retention times does not
directly indicate the best separation, and resolutions between peak
pairs must be determined. For this calculation, peak width data
must be known. In this chromatographic system, the peak widths
were found to vary considerably with the percentage of organic
modifier in the mobile phase. An additional ANN was therefore
constructed in order to predict the peak widths for each analyte
throughout the experimental space. For this ANN, the values of
each factor were again entered as inputs, while the average peak
widths for each analyte comprised the nine outputs. Average data
was used to eliminate the noise produced by slight variations in
peak widths, giving a total of nine training points and six verifica-
tion points. The best performing ANN for the prediction of peak
widths had a MLP architecture consisting of three input nodes,
twelve hidden nodes and nine output nodes (peak widths for nine
analytes) (MLP 3:3-12-9:9). Correlation between experimental and
predicted peak widths was satisfactory (r2 = 0.9838). Three experi-
mental points were selected and run to determine if the predicted
data was consistent with the new experimental data. The average
relative error was 7.7 ± 4.3% (range 0.282–19.1%).

3.2. Optimisation

The predicted retention times and peak widths generated by the
two ANNs were used to calculate the resolution between each peak,
and the optimum separation conditions were determined according
to the minimum resolution (Rmin). The data generated was sorted
in order of descending Rmin to identify the conditions for which
Rmin was a maximum. Ten different conditions gave rise to the
maximum value of Rmin, which was approximately 1.6, however
each condition was associated with a different run time. From this

data, and considering a maximum Rmin and minimum run time, the
optimum conditions were determined to be 10% MeOH, 6.5% initial
ACN composition and a gradient of 2.8 (0–15 min, 6.5–48.5%). The
ANN data predicted that these conditions would give resolution
values greater than 1.5 and a run time of less than 13 min. To ascer-
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Table 2
Predicted and experimental retention times and peak widths with corresponding errors for the optimum separation conditions.

Analyte Predicted tr (min) Actual tr (min) Error (%) Predicted width Actual width Error (%)

7-Aminonitrazepam 1.874 2.189 14.39 0.122 0.131 7.12
7-Aminoclonazepam 3.716 4.178 11.06 0.125 0.133 6.22
7-Aminoflunitrazepam 5.094 5.515 7.628 0.131 0.138 5.25
Nitrazepam 9.404 9.669 2.741 0.142 0.149 4.52
Oxazepam 9.618 9.908 2.927 0.128 0.130 1.89
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lunitrazepam 10.560 10.757
lprazolam 10.890 11.044
emazepam 11.130 11.247
iazepam 12.850 12.845

ain that these conditions were indeed the optimum, they were
erified experimentally, and an example of the separation attained
s illustrated in Fig. 3. The predicted and experimental retention
imes and peak widths, with associated relative errors under these
onditions are illustrated in Table 2. The errors concerning the pre-
iction of retention times at the optimum ranged from 0.039% to
4.39%, with an average of 4.78%. The largest error was associated
ith the prediction of the retention time of 7-aminonitrazepam.

ven though the absolute difference between the experimental and
redicted retention times for this analyte was only 0.315 min, this
quated to a large percentage error since 7-aminonitrazepam had
he least retention on the column. The errors relating to the pre-
iction of peak widths at the optimum ranged from 1.41% to 7.12%,
ith an average of 3.57%. Again, the largest error was associated
ith the prediction of 7-aminonitrazepam. According to Zakaria et

l. [15], predictive errors using ANNs, or indeed any other model,
hould be less than 5% for optimisation purposes. The results for
ix of the nine analytes are in agreement with this. While higher
han desired, the errors associated with the prediction of the 7-
mino metabolites had no bearing on the final outcome since these
nalytes were well-resolved under all conditions, including the
ptimum.

Table 3 illustrates the predicted and experimental resolution val-
es, which were calculated using the predicted and experimental

etention times and peak widths. Unfortunately, a substantial error
as associated with the prediction of the resolution between alpra-

olam and temazepam (PP7), which was the most difficult peak pair
o separate. So while baseline resolution was predicted (Rs = 1.63),
his was not observed when the conditions were run, and a reso-

able 3
redicted and experimental resolution values for the optimum separation
onditions.

PP1 PP2 PP3 PP4 PP5 PP6 PP7 PP8

redicted 14.9 10.8 31.6 1.59 6.98 2.34 1.63 11.2
xperimental 15.1 9.87 29.0 1.71 6.17 1.99 1.35 10.2

P1 = 7-Aminonitrazepam/7-Aminoclonazepam; PP2 = 7-aminoclonazepam/7-
minoflunitrazepam; PP3 = 7-aminoflunitrazepam/nitrazepam;
P4 = nitrazepam/oxazepam; PP5 = oxazepam/flunitrazepam;
P6 = flunitrazepam/alprazolam; PP7 = alprazolam/temazepam;
P8 = temazepam/diazepam.

able 4
ecovery of benzodiazepines from whole sheep blood.

nalyte Concentration (�g/mL) Recovery (%, mean ± S.D.)

-Aminonitrazepam 6.0 58 ± 5
-Aminoclonazeapm 6.0 64 ± 1
-Aminoflunitrazepam 6.0 61 ± 4
itrazepam 8.0 77 ± 8
xazepam 8.0 86 ± 11
lunitrazepam 8.0 92 ± 20
lprazolam 8.0 75 ± 6
emazepam 8.0 75 ± 6
iazepam 8.0 75 ± 13
1.831 0.142 0.145 1.89
1.394 0.140 0.143 2.31
1.040 0.155 0.157 1.41
0.039 0.153 0.155 1.49

lution value of only Rs = 1.35 was obtained experimentally. Error in
the predicted resolution values could be due to the accumulation of
small errors in predicted retention and peak width data, which must
be added together when retention times and widths are inputted
into the resolution equation.

The optimisation of gradient elution separations using ANNs
has been previously reported, however the method presented here
offers a number of advantages. Firstly, in contrast to the methods
presented by Madden et al. [11] and Shan et al. [13], the initial and
final compositions of the organic modifier do not need to be con-
strained. Instead, the initial composition of organic modifier and
the slope of the gradient can be used as input variables for an
ANN, and the final composition can be calculated from the gra-
dient slope after substituting in an appropriate time. Not only does
this allow for greater flexibility because it does not rely on fixed
starting and finishing compositions, but it also effectively opens up
the experimental space and increases the possibility of finding the
optimum separation conditions. In addition, having flexible start-
ing and final concentrations avoids the use of long analysis times
that are required to implement slow gradients when concentrations
are fixed. Another advantage of this method is that separate ANNs
do not need to be constructed for each analyte, unlike the method
presented by Shan et al. [13].

3.3. Method validation

Calibration curves for spiked whole blood were lin-
ear in the range 0.432–6.00 �g/mL for 7-aminonitrazepam,
7-aminoflunitrazepam and 7-aminoclonazepam, and
0.576–8.00 �g/mL for oxazepam, nitrazepam, temazepam, flu-
nitrazepam, diazepam and alprazolam. Correlation coefficients
(r2) ranging from 0.9973 to 0.9993 were established in these
ranges. The LODs were between 0.0057 �g/mL (nitrazepam) and
0.023 �g/mL (flunitrazepam). Intra-assay precision and accuracy
were determined by analysis of five replicate samples at high and
low concentration within the same validation batch. Inter-assay
precision and accuracy were assessed by analysing five replicate
samples at high and low concentrations. Intra-assay precision was

between 0.18% and 3.0%, while inter-assay precision was between
0.15% and 13%. Accuracies were greater than 97%, while recoveries
were between 58% and 92% as shown in Table 4.

Table 5
Blood concentrations of benzodiazepines in post-mortem blood samples.

Case no. Diazepam Temazepam Oxazepam

1 1.2 4.0 BLOQ
2 1.4 0.12 N.D.
3 N.D. N.D. 4.6
4 N.D. N.D. 1.8
5 0.3 N.D. N.D.

Abbreviations: BLOQ, below limit of quantification; N.D., not detected.
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ig. 4. Example chromatogram for post-mortem blood sample. Conditions: Zorbax S
80 nm, 25 mM formate buffer, pH 2.8, 10% MeOH, ACN gradient 0–15 min, 6.5–48.5

.4. Method application

Five post-mortem blood samples were analysed and the ben-
odiazepine concentrations found in each sample are reported in
able 5. Three of the samples were found to contain diazepam in
he range 0.3–1.4 �g/mL; two samples contained temazepam at
oncentrations of 0.12 and 4.0 �g/mL; and two samples had quan-
ifiable levels of oxazepam at 1.8 and 4.6 �g/mL. Oxazepam was
etected at sub-therapeutic concentrations in an additional case,
owever the concentration was below the limit of quantification
BLOQ). An example chromatogram of this case can be seen in Fig. 4.
he sensitivity of the method was such that it enabled the quantifi-
ation of benzodiazepines found at fatal, toxic and even therapeutic
oncentrations in post-mortem samples. In one case, the concentra-
ion of oxazepam was BLOQ, however the method was still sensitive
nough to enable its detection.

. Conclusions

A combination of a three factor experimental design and ANNs
as applied to the optimisation of a gradient elution HPLC separa-

ion of nine benzodiazepines. Following investigation of a number

f ANNs, the best-performing one was found to be trained on repli-
ate retention time data, and the optimum conditions predicted
ere 25 mM formate buffer (pH 2.8), 10% MeOH, and ACN gradi-

nt 0–15 min, 6.5–48.5%. The error associated with the prediction
f retention times and peak widths under these conditions was less

[
[
[

[

column (50 mm × 4.6 mm, 1.8 �m), temperature 30 ◦C, 10 �L injection, detection �
tion order: (1) OXA, (2) TEM, and (3) DIA.

than 5% for six of the nine analytes studied. This method represents
a more flexible and convenient means for optimising gradient sep-
arations than has been previously reported. The optimised method
was validated for blood and successfully applied to authentic post-
mortem samples. The limits of detection of the method ranged
from 0.0057 to 0.023 �g/mL, and recoveries were in the order of
58–92%.
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